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Lectures on 15.4. and 17.4.
We finish the construction of the stochastic integral with respect to a contin-
uous martingale M . Let H be a simple left-continuous IF-adapted process:

H =
n

∑

k=1

αkI(ak ,bk](·),

where αk ∈ Fak
and αk is a bounded random variable. Define the stochastic

integral by

(4.4) Nt
.
= (H ◦M)t

.
=

∫ t

0
HsdMs

.
=

n
∑

k=1

Hk(Mt∧bk
−Mt∧ak

).

Theorem 4.1. Let H be a simple left-continuous process and let M ∈ M2.
If N = H ◦M is given by (4.4), then N ∈ M2, we have the isometry

(4.5) IEN2
∞ = IE

∫ ∞

0
H2

s d[M,M ]s

and

(4.6) [N,N ] = H2 · [M.M ].

Proof We can assume that ak, bk satisfy

a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an−1 < bn−1 ≤ an < bn.

Now its easy to check that N is a continuous martingale and N ∈ M2. Next
we check (4.5): Note first that

IEN2
∞ = IE

(

∑

H2
k (Mbk

−Mak
)2

)

+2IE





∑

i<j

HiHj (Mbi
−Mai

)
(

Mbj
−Maj

)



 .

We show that

IE
(

HiHj (Mbi
−Mai

)
(

Mbj
−Maj

))

= 0;

this follows from the fact that

IE
(

HiHj (Mbi
−Mai

)
(

Mbj
−Maj

)

|Faj

)

= 0.

On the other hand

IE[H2
k(Mbk

−Mak
)2] = IE[H2

k IE[(Mbk
−Mak

)2|Fak
]]

= IE[H2
k IE[M2

bk
−M2

ak
|Fak

]]

= IE[H2
k IE[[M,M ]bk

− [M,M ]ak
|Fak

]]

= IE[H2
k([M,M ]bk

− [M,M ]ak
)]

This proves the equality (4.5). To finish the proof one must show that the
process N2 −H2 · [M,M ] is a martingale. This is shown similarly. �

Denote by L(IF) left-continuous IF- adapted processes with right-hand limits.
Then we can write

P(IF) = σ(L(IF).
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Lemma 4.2. Let H ∈ P(IF) with

IE

∫ ∞

0
H2

s d〈M,M〉s <∞.

Then there exists a sequence Hn of simple left-continuous processes such
that

(4.7) IE

∫ ∞

0
(Hs −H(n)

s )2d〈M,M〉s → 0,

as n→ ∞.

Proof Assume that we have proved the claim for boundedH. If H satisfies
IE

∫ ∞
0 H2

sd〈M,M〉s <∞, then for every ǫ > 0 we can find K ≥ Kǫ such that

IE

∫ ∞

0

(

Hs −HK
s

)2
d〈M,M〉 < ǫ,

where HK = H ∧K.
Let H be left-continuous IF- adapted process with (4.1) and H ≥ 0. We
assume that H ≤ K. Let k−1

2n < s ≤ k
2n and H k−1

2n
≤ n; Hn

s = H k−1

2n
and if

H k−1

2n
> n, then put Hn

s = n, when k = 1, . . . , n2n and otherwise Hn
s = 0.

We have that by left-continuity H = limnH
n and the process H(n) satisfies

(4.1). DCT theorem implies that Hn → H in the space IL2(IP ⊗ [M,M ]∞).
Now if H ∈ L(IF) is bounded and the process H satisfies

IE

∫ ∞

0
H2

s d〈M,M〉s <∞,

then by considering the decomposition H = H+ −H− we get in the usual
way that (4.7) holds.
Define the distance of two process H,L by ρ(H,L)

ρ(H,L) = ||
(∫ ∞

0
(Hs − Ls)

2 d〈M,M〉s
)

1

2

||2.

Denote by H the following class of processes

H =

{

H ∈ P : |H| ≤ K, IE
∫ ∞
0 H2d〈M,M〉s <∞ and

∀ǫ > 0 ∃L ∈ L such that ρ(H,L) < ǫ

}

We have that the space of K- bounded left-continuous processes LK(IF) ⊂
H. Moreover, if Hn ∈ H, Hn ↑ H ≥ 0 and H ∈ IL2(IP ⊗ [M,M ]∞), then
H ∈ H. So H is a monotonic class. Hence σ(LK) = H. �

Corollary 4.1. Let H ∈ P∩L2(IP⊗〈M,M〉∞). Then there exists a sequence
Hn of simple left-continuous processes such that

Hn L2(IP⊗〈M,M〉∞)−→ H.

Stochastic integral. Let us define the stochastic integral for H ∈ P∩L2(IP⊗
〈M,M〉∞). Let Hn be a sequence of simple left-continuous processes, which

satisfy Hn L2(IP⊗〈M,M〉∞)−→ H. By Doob’s IL2 maximal inequality

||(Hn −Hm) ◦M ||M2 = ||((Hn −Hm) ◦M)∞||2
≤ 2(IE

∫ ∞

0
(Hn

s −Hm
S )2d〈M,M〉s)

1

2 → 0
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as m,n→ ∞. So the sequence Hn ◦M is a c-sequence in the space M2, and
so it has a limit N ∈ M2. Moreover supt ((Hn ◦M)t −Nt) → 0 in the space
L2(IP). Let us check that the limit N does not depend on the approximating

sequence Hn: let H̃n be another sequence, which satisfies ρ(H, H̃n) → 0, as
n→ ∞, then

IE

(
∫ ∞

0

(

Hn
s − H̃n

s

)

dMs

)2

= IE

∫ ∞

0

(

Hn
s − H̃n

s

)2
d〈M,M〉s → 0,

as n → ∞; this means that the limit N is independent of the sequence Hn

used for the approximation of H.
Process N is the stochastic integral of H with respect to the martingale
M ∈ M2; we continue to use the notation N = H ◦ M . We have the
isometry

(4.8) IE

(
∫ ∞

0
HsdMs

)2

= IE

∫ ∞

0
H2

sd〈M,M〉s

and

(4.9) 〈H ◦M,H ◦M〉 = H2 · 〈M,M〉.
The equality (4.8) follows directly the fact that it is true for the approxi-
mating sequence. The proof of the claim (4.9) is an exercise.
Let us discuss the following situation:
Let H be a predictable process, which satisfies

(4.10)

∫ ∞

0
H2

sd〈M,M〉s <∞,

but the condition (4.1) is not fulfilled. Then we can define the stochastic
integrals locally as follows: let K > 0 and put

τK = inf{t :

∫ t

0
H2

sd〈M,M〉s = K}.

Note that HI(0,τK ] is a predictable process, and we have
∫ ∞

0
(HI[0,τK ])

2
sd〈M,M〉s ≤ K,

and the condition (4.1) is in force. On the other hand
∫ ∞

0
(HI(0,τK ])sdMs = (H ◦M)τK )∞ = (H ◦M τK )∞

[for more details see the next weeks exercise]. Hence we can define the
stochastic integral as a local martingale H ◦M , where the pair of processes
H, 〈M,M〉 satisfies the condition (4.10) with the localizing sequence τK ,

K ≥ 1. Here τK → ∞, and so
∫ t

0 HsdMs := limK→∞

∫ t

0 HsdM
τK
s , where the

limit is almost surely. The same argument applies when M is only a local
martingale.

Remark 4.2. Note that the condition IE
∫ T

0 H2
sd〈M,M〉s <∞ gives that the

stochastic integral (H ◦M) is a square integrable martingale on the interval

[0, T ] But if we have only that
∫ T

0 H2
sd〈M,M〉s < ∞ the stochastic integral

is only a local martingale on [0, T ].
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Remark 4.3. Consider the case when H = f(M), f is continuous, bounded
and we have

IE

∫ ∞

0
f2(Ms)d〈M,M〉s <∞.

Then H = f(M) is continuous, and hence predictable. We can approximate
H by

Hn
s = f(Mtk−1

)1(tk−1,tk](s)

with tk ≤ n, and Hn
s = f(Mn)1(n,∞)(s). Then, if T ≤ n,

(Hn ◦M)T =
∑

tk≤T

f(Mtk−1
)(Mtk −Mtk−1

) →
∫ T

0
f(Ms)dMs

in L2(IP) and hence in probability, too. In this sense stochastic integral is a
Riemann-Stieltjes integral.

4.3. Itô formula.

Theorem 4.2 (Integration by parts). Let M,N ∈ M2. Then we have the
following integration by parts formula:

(4.11) MN = M ◦N +N ◦M + 〈M,N〉.
Proof Note that the processes M,N are continuous, and hence they are
predictable, and so the stochastic integrals in the formula (4.11) well defined,
and at least local martingales.
From the polarization formula MN = 1

4((M + N)2 − (M −N)2) it follows
that it is enough to prove the claim in the case of N = M :

M2 = 2M ◦M + 〈M,M〉.
From the theorem 3.10 we obtain that the process M2 − 〈M,M〉 is a local
martingale. Further, the process Cn constructed in the proof of theorem
3.10, where

Cn
t =

∑

k

Mτn
k
I{t∈(τn

k
,τn

k+1
]}

is predictable, Cn → M , and hence we must have the equality M2 −
[M,M ] = 2M ◦M . This proves the claim. �

Assume that M is a bounded continuous martingale, π is a partition of the
interval [0, T ], with |π| → 0. From the Abel summation formula we obtain
for t ∈ [0, T ], as |π| → 0:

M2
t = 2

∑

k

Mt∧tk−1
(Mt∧tk −Mt∧tk−1

) +
∑

k

(Mt∧tk −Mt∧tk−1
)2

.
= 2(Mπ ◦M)t +Qπ

t .

We shall show that Qπ
t

IP−→ 〈M,M〉t, as π → 0. Note first that if η is

another partition, then (Mπ −Mη)∗T
IP−→ 0, as |π| ∨ |η| → 0. From this

we obtain Mπn ◦M is a c-sequence, if |πn| → 0, as n → ∞. Hence the
martingales Mπ ◦M converge towards a continuous martingale N . From
this we obtain that also the sequence of random variables Qπ converges to
the limit Q̃. After passing to the limit we will get that the processM2−Q̃ is a
martingale [recall that we have assumed thatM is a continuous and bounded

martingale] and the process Q̃ is continuous and increasing. From this we
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obtain that Q̃ = 〈M,M〉, because the angle bracket process 〈M,M〉 is the
unique increasing continuous process with the property that M2 − 〈M,M〉
is a (local) martingale..

Continuous semimartingales.

Definition 4.1. Let X be a continuous process adapted to IF. The process
X is a (continuous) semimartingale, if it satisfies X = X0 +M +A, where
M is a continuous local martingale and the process A has locally bounded
variation, and we assume that M0 = A0 = 0.

The representation of X as X = X0 + M + A is unique; this follows from
theorem 3.7.

Integration with respect to a continuous semimartingale. Let X be a contin-
uous semimartingale with the decomposition X = X0 + M + A and let H
be a predictable process such that the Riemann-Stieltjes-integrals of H with

respect to A and 〈M,M〉 satisfy
∫ t

0 |Hs|dAs <∞ and
∫ t

0 H
2
sd〈M,M〉s <∞.

Then the integral H ◦X := H ◦M +H ·A is well-defined: the first integral
is a stochastic integral and the second is a Riemann-Stieltjes integral.

Integration by parts formula for continuous semimartingales. Let X = X0 +
M +A. Define 〈X,X〉 = 〈M,M〉. Then we have that

(4.12) 〈X,X〉t = IP − lim
|π|→0

∑

tk∈π

(Xtk −Xtk−1
)2.

We shall prove this. We can assume that M and A are bounded and that
X0 = 0. Then also X is bounded. Now

∑

k

(Xtk −Xtk−1
)2 =

∑

k

(Mtk −Mtk−1
)2 +

∑

k

(Atk −Atk−1
)2

+2
∑

k

(Atk −Atk−1
)(Mtk −Mtk−1

).

Because the process A has bounded variation, then
∑

k

(Atk −Atk−1
)2 ≤ max

tk
|Atk −Atk−1

|Vt(A)
IP−→ 0.

Further, since the process M is continuous, we obtain using the bounded
variation property of A that

|
∑

k

(Atk −Atk−1
)(Mtk −Mtk−1

)| ≤ max
tk

|Mtk −Mtk−1
|Vt(A)

IP−→ 0.

After these observations it is clear that in (4.12): the only non-zero limit is
the angle bracket process of the martingale M .
The following is an exercise:

Theorem 4.3. Let X,Y be continuous semimartingales. Then

(4.13) XY = X0Y0 +X ◦ Y + Y ◦X + 〈X,Y 〉.
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Itô formula. Let F : IR → IR, and F ∈ C2; put Fx = ∂F
∂x

and Fxx = ∂2F
∂x2 .

Further, if G : IR+ × IR → IR, then we put Gt = ∂F
∂t

, Gx = ∂G
∂x

and

Gxx = ∂2G
∂x2 .

We start with the following Itô formula. The bautiful proof is due to H.P.
McKean.

Theorem 4.4. Let X be a continuous semimartingale and F ∈ C2. Then

(4.14) F (Xt) = F (X0) +

∫ t

0
Fx(Xs)dXs +

1

2

∫ t

0
Fxx(Xs)d〈X,X〉s.

Proof Let X = X0 +M +A be the semimartingale decomposition of X..
Let I be the family of functions in F ∈ C2 satisfying the Itô formula.
It is easy to check that the functions F (x) = 1, F (x) = x belong to the family
I. Moreover, if F,G ∈ I and a, b ∈ IR. Then we have (aF+bG)x = aFx+bGx

and (aF + bG)xx = aFxx + bGxx, and so aF + bG ∈ I. This means that I
is a linear vector space.
Let now F,G ∈ I: then we have

F (Xt) = F (X0) +

∫ t

0
Fx(Xs)dXs +

1

2

∫ t

0
Fxx(Xs)d〈X,X〉s

and

G(Xt) = G(X0) +

∫ t

0
Gx(Xs)dXs +

1

2

∫ t

0
Gxx(Xs)d〈X,X〉s.

Observe that F (X) is a continuous semimartingale with the decomposition
∫ t

0
Fx(Xs)dMs

as the local martingale part and the process
∫ t

0
Fx(Xs)dAs +

1

2

∫ t

0
Fxx(Xs)d〈X,X〉s

as the local martingale part.
We can now compute using the integration by parts formula (4.13):

F (Xt)G(Xt) = F (X0)G(X0) + (F (X) ◦G(X))t + (G(X) ◦ F (X))t + 〈F (X), G(X)〉t

= F (X0)G(X0) +

∫ t

0
(Fx(Xs)G(Xs) +Gx(Xs)F (Xs)) dXs

+
1

2

∫ t

0
(2Fx(Xs)Gx(Xs) + F (Xs)Gxx(Xs) +G(Xs)Fxx(Xs)) d〈X,X〉s;

where we have used the fact that the martingale part of the semimartingale
F (X) is Fx(X) ◦M (resp. the martingale part of the semimartingale G(X)
is Gx(X) ◦M and we also have 〈M,M〉 = 〈X,X〉 by definition. Moreover,
we have used the following property of stochastic integrals: 〈H ◦X,K ◦X〉 =
HK · 〈X,X〉.
Recall the differentiation rules for the product: (FG)x = FxG + GxG and
(FG)xx = FxxG+GxxF + 2FxGx. This means that we can write

F (Xt)G(Xt) = F (X0)G(X0)+

∫ t

0
(FG)x(Xs)dXs+

1

2

∫ t

0
(FG)xx(Xs)d〈X,X〉s.
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Hence FG ∈ I. This means that our set I is a vector space and algebra.
Since 1 ∈ I and the identity map is in I. Since I is a vector space and an
algebra, this means that Itô formula is valid for all polynomials.
The next step is to use Weierstrass approximation theorem, which tells that
every continuous function can be approximated by polynomials. So we have
X a continuous semimartingale with X = X0 +M +A. We also know that
equality (4.14) is valid for polynomials p(x).
By the Weierstrass approximation theorem there exists a sequence of poly-
nomials p1, p2, . . . such that sup|x|≤c |pn(x) − Fxx(x)| → 0, and n→ ∞ and
c > 0. By integrating polynomials pn twice we obtain a sequence fn of
polynomials, which satisfy

sup
|x|≤c

(|fn(x) − F (x)| ∨ |fn
x (x) − Fx(x)| ∨ |fn

xx(x) − Fxx(x)|) → 0

when n→ ∞ and c > 0.
Let us now assume that X∗

t ≤ c and 〈M,M〉t ≤ c for some c > 0. Then
fn(Xt) → f(Xt) for all t > 0. Because

sup
|y|≤c

(|Fx(y)| + |fn
x (y)| + |Fxx(y)| + fn

xx(y)|) ≤ K <∞,

then by DCT for Riemann-Stieltjes– integrals we obtain that

(fn
x (X) · A)t → (Fx(X) ·A)t

and

(fn
xx(X) · 〈X,X〉)t → (Fxx(X) · 〈X,X〉)t,

as n→ ∞.
Moreover, for the same reason we have

(fn
x (X) − Fx(X))2 · 〈M,M〉t → 0

and so

((fn
x (X) − Fx(X)) ◦M)∗t

L2(IP)→ 0,

as n→ 0. Hence the Itô formula is valid in the case ofX∗
t ≤ c and 〈M,M〉t ≤

c for any c > 0.
Finally we can prove the general case by stopping. Indeed, define stopping
time tc by

τc = inf{u : |Xu| ≥ c} ∧ inf{u : 〈M,M〉u ≥ c}.
Then the Itô formula is valid on the set {τc ≥ t}. But the processes X
and 〈M,M〉 are continuous, and so IP(τc ≥ t) → 1 as c → ∞, and we have
proved the Itô formula. �

Variants of Itô formula. It is useful to stop here and consider some special
cases:

• If the semimartingale X is continuous and has bounded variation on
compacts, then M ≡ 0, X = X0 + A and we obtain the change of
variables formula

F (Xt) = F (X0) +

∫ t

0
Fx(Xs)dXs = F (X0) +

∫ t

0
Fx(Xs)dAs.



STOCHASTIC ANALYSIS: AN INTRODUCTION 53

• If the semimartingale X is the Brownian motion W , then 〈W,W 〉t =
t, and we can write the Itô formula as follows

F (Wt) = F (0) +

∫ t

0
Fx(Ws)dWs +

1

2

∫ t

0
Fxx(Ws)ds.

A sufficient condition for the martingale property of the stochastic
integral is IE

∫ t

0 (Fx(Ws))
2ds < ∞ for all t ≥ 0. Note also that for

Brownian motion we have that IEW 2
t = t <∞, but W is not in the

space M2, because supt IEW 2
t = ∞.

• Let X ∈ IRd be a vector values continuous semimartingale: X =
(X1, . . . ,Xd)t, where Xk = Xk

0 + Ak + Mk, k = 1, . . . , d. If F :

IRd → IR and F ∈ C2(IR
d), then

F (Xt) = F (X0) +
d

∑

k=1

∫ t

0
Fxk

(Xs)dX
k
s +

1

2

d
∑

j,k=1

∫ t

0
Fxkxj

(Xs)d〈Xk,Xj〉s;

here 〈Xk,Xj〉 = 〈Mk,M j〉.
• We can apply the previous result to the special case of X ∈ IR2 with
X1

t = t and X2
t = Wt. If G ∈ C1,2(IR+, IR), then one can show that

we have the following variant of the Itô formula:
(4.15)

G(t,Wt) = G(0, 0)+

∫ t

0
Gt(u,Wu)du+

∫ t

0
Gx(u,Wu)dWu+

1

2

∫ t

0
Gxx(u,Wu)du.

• In the previous case we can find explicit solutions of certain stochas-
tic integrals. Arrange the terms in (4.15) to obtain

∫ t

0
Gx(u,Wu)dWu = G(t,Wt) −G(0, 0) −

∫ t

0
(Gt(u,Wu) +Gxx(u,Wu)) du.

Remark 4.4. Let X be a continuous semimartingale and F ∈ C2. Then
by the proof of theorem 4.4 we obtain that F (X) is also a continuous semi-
martingale.

5. Applications of the Itô formula

5.1. A characterization of Brownian motion by Lévy. Recall that the
characteristic function ψX(λ) of a random variable X is

ψX(λ) = IEeiλX ,

where λ ∈ IR, i =
√
−1 and eiy = i sin(y) + cos(y), when y ∈ IR. We

recall that the distribution of a random variable is uniquely defined by its
characteristic function.

Theorem 5.1 (Lévy). Let X be a continuous process with X0 = 0 and
IEXt = 0. The process X is a Brownian motion if and only if the processes
X and X2

t − t, t ≥ 0, are martingales with respect to the history FX
t , t ≥ 0.

Proof Let X be a Brownian motion. By theorem 3.4 the processes X and
X2

t − t are martingales with respect to the history FX
t .

Conversely, assume that X and X2
t − t are martingales. Then the angle

bracket of the martingale X is 〈X,X〉t = t, because the angle bracket process



54 ESKO VALKEILA

is unique. Let us apply Itô formula (4.14) to the martingale X and function
F (x) = eiλx. Then Fx(y) = iλF (y) and Fxx(y) = −λ2F (y).
By considering real and imaginary parts separately we obtain:

eiλXt = 1 +

∫ t

0
eiλ(Xu−Xs)du− λ2

2

∫ t

0
eiλXudu

= eiλXs + iλ

∫ t

s

eiλ(Xu−Xs)du− λ2

2

∫ t

s

eiλXudu;

where the last line is obtained, since the representation is also valid at time
s < t. Let us divide the above equality by eiλXs :

(5.1) eiλ(Xt−Xs) = 1 + iλ

∫ t

s

eiλ(Xu−Xs)dXu − λ2

2

∫ t

s

eiλ(Xu−Xs)du.

Next, take conditional expectations on the both sides of (5.1) with respect
to sigma-algebra FX

s and we obtain

IE[eiλ(Xt−Xs)|FX
s ] = 1 + iλIE[

∫ t

s

eiλ(Xu−Xs)dXu|FX
s ]

−λ
2

2
IE[

∫ t

s

eiλ(Xu−Xs)du|FX
s ]

= 1 − λ2

2

∫ t

s

IE[eiλ(Xu−Xs)du|FX
s ]du,(5.2)

where we have used the fact that the stochastic integral is a true martingale,
and the order of taking the conditional expectation and integral can be
changed by the ordinary Fubini theorem.
Put gs(u) = IE[eiλ(Xu−Xs)|FX

s ]; now we can rewrite the equality (5.2) as:

gs(t) = 1 − λ2

2

∫ t

s

gs(u)du.

We get that gs(t) = e−
λ2

2
(t−s), since gs(t) satisfies the following ordinary

differential equation g′s = −λ2

2 gs with initial value gs(s) = 1. Hence the
expression gs(t) is deterministic.

This means that IE[eiλ(Xt−Xs)|FX
s ] = e−

λ2

2
(t−s). In other words, for all

A ∈ FX
s we have the equality

∫

A

eiλ(Xt−Xs)dIP =

∫

A

e−
λ2

2
(t−s)dIP

= IP(A)e−
λ2

2
(t−s).

We have shown that the conditional characteristic function of the increment
Xt −Xs is independent from the condition FX

s .
Because the characteristic function determines the distribution, this means
that the conditional distribution of the increment is independent of FX

s :
Xt −Xs

w

FX
s Finally, the characteristic function of the increment Xt −Xs

is e−
λ2

2
(t−s), and soXt−Xs ∼ N(0, t−s). Hence the processX is a Brownian

motion. �


